If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+96x+80=0
a = 4; b = 96; c = +80;
Δ = b2-4ac
Δ = 962-4·4·80
Δ = 7936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7936}=\sqrt{256*31}=\sqrt{256}*\sqrt{31}=16\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-16\sqrt{31}}{2*4}=\frac{-96-16\sqrt{31}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+16\sqrt{31}}{2*4}=\frac{-96+16\sqrt{31}}{8} $
| x^2+5x-756=0 | | x-65=125 | | 116=x+6 | | 5+2(x-4)=x+5 | | 5x=12x-70 | | 5x=12x–70 | | 300x^2+96x+4800=0 | | 17x+3=15x+5 | | 11x+9=80 | | (x+2)(x−3)=0 | | 11x+9=114 | | 11x+9=16x-5 | | 5x^2+96x+80=0 | | 2/3(n+9)=12 | | 7x43=-20 | | 5.1=-5w+17.6 | | 3=0.5h+1 | | 8n-7=53 | | x+92=5x+88 | | 9x+84+78=180 | | x+92+5x+88=180 | | 2=0.5h+1 | | 1+y/3=-2.84 | | 1=0.5h+1 | | 5(a+2)-3(3a-1)=1 | | (7+x)^2=3^2+x^2 | | 0.06x=0.30 | | 7d2+10d=3 | | u/8+14.3=-11.3 | | 0.2+X+0.5-x+2x=1 | | x+56+1x=180 | | 2=x+0.6 |